Name the geometric term(s) modeled by each object.

1) A telephone pole
 \[\text{line} \]

2) a knot in a rope
 \[\text{point} \]

3) a blanket
 \[\text{plane} \]

Refer to the figure to answer each question.

4) name a line that contains point E
 \[\overline{BE} \text{, line q} \]

5) name the plane containing lines p and n
 \[\text{Plane G} \]

6) name two points not on AB
 \[D, C \]

Find the value of the variable and \(YZ \) if \(Y \) is between \(X \) and \(Z \).

7) \(XY = 4x + 3 \), \(YZ = 2x - 7 \), \(XZ = 22 \)

 \[
 \begin{align*}
 XY + YZ &= XZ \\
 4x + 3 + 2x - 7 &= 22 \\
 6x &= 24 \\
 x &= 4
 \end{align*}
 \]

 \[
 YZ = 2(4) - 7 \\
 YZ = 1
 \]

8) Find the distance between the given two points: \(A(-3, 4) \) and \(B(2, -4) \)

 \[
 d = \sqrt{(-3-2)^2 + (4-(-4))^2} \\
 = \sqrt{(-5)^2 + (8)^2} \\
 = \sqrt{25 + 64} \\
 = \sqrt{89}
 \]

9) Find the midpoint given the endpoints: \(C(-2, 5) \) and \(D(3, -17) \)

 \[
 \left(\frac{-2 + 3}{2}, \frac{5 - 17}{2} \right) = \left(\frac{1}{2}, \frac{-12}{2} \right) \\
 \left(\frac{0.5}{2}, -6 \right)
 \]
10) Find the coordinates of the missing endpoint if B is the midpoint of line AC. C(-5, 4) and B(-2, 5)

\[\left(\frac{-5 + x}{2}, \frac{4 + y}{2} \right) \]

Way Z:

\[(-5, 4) \quad (-2, 5) \quad (1, 4) \]

11) Suppose M is the midpoint of line FG. Use the given information to find the missing measure or value.

FM = 3x - 4, MG = 5x - 26, FG = ?

\[
\begin{align*}
3x - 4 &= 5x - 26 \\
+4 &= +4 \\
3x &= 5x - 22 \\
-5x &= -5x \\
-2x &= -22 \\
x &= 11
\end{align*}
\]

FM = 29, MG = 29, FG = 58

12) MG = 7x - 15, FG = 33, x = ?

\[
\begin{align*}
7x - 15 &= \frac{1}{2}FG \\
7x - 15 &= \frac{1}{2}(33) \\
7x - 15 &= 16.5 \\
7x &= 31.5 \\
x &= 4.5
\end{align*}
\]

13) \(\angle CFD \) and \(\angle BFC \)

adjacent

14) \(\angle AFD \) and \(\angle EFD \)

adjacent, linear pair

Find the value of each variable.

15)

\[4y + 3y - 30 = 180 \]

\[7y - 30 = 180 \]

\[7y = 210 \]

\[y = 30 \]

\[\angle 1 = 120^\circ \]

16)

\[5x + 4 = 114 \]

\[5x = 110 \]

\[x = 22 \]

\[2y + 3(22) - 24 = 180 \]

\[2y + 66 - 24 = 180 \]

\[2y + 42 = 180 \]

\[2y = 138 \]

\[y = 69 \]
17) \[4x - 45 = 215 \]
\[4x = 260 \]
\[x = 65^\circ \]

18) \(\angle E \) and \(\angle F \) are supplementary. The measure of \(\angle E \) is 54 more than the measure of \(\angle F \). Find the measures of each angle.
\[
\angle E = x + 54 = 117^\circ \\
\angle F = x = 63^\circ
\]

19) The measures of two complementary angles are \(\angle 1 = 9x + 5 \) and \(\angle 2 = 3x + 1 \). Find the measures of BOTH angles. Draw a picture if you need to!
\[
\angle 1 + \angle 2 = 90^\circ \\
9x + 5 + 3x + 1 = 90 \\
12x + 6 = 90 \\
x = 6.5 \\
\angle 1 = 9(7) + 5 = 68^\circ \\
\angle 2 = 22^\circ \\
90 - 68 = 22^\circ
\]

Use the figure to answer questions 20-24.

20) name a pair of vertical angles
\(\angle BFC, \angle DFG \)

21) name a pair of obtuse vertical angles
\(\angle BFD, \angle CFG \)

22) name a pair of adjacent angles
\(\angle FDG, \angle EDG \)

23) name a linear pair with vertex D
\(\angle EDF, \angle ADF \)

24) name 3 non-collinear points
A, C, D